Finding influential spreaders from human activity beyond network location
نویسندگان
چکیده
Most centralities proposed for identifying influential spreaders on social networks to either spread a message or to stop an epidemic require the full topological information of the network on which spreading occurs. In practice, however, collecting all connections between agents in social networks can be hardly achieved. As a result, such metrics could be difficult to apply to real social networks. Consequently, a new approach for identifying influential people without the explicit network information is demanded in order to provide an efficient immunization or spreading strategy, in a practical sense. In this study, we seek a possible way for finding influential spreaders by using the social mechanisms of how social connections are formed in real networks. We find that a reliable immunization scheme can be achieved by asking people how they interact with each other. From these surveys we find that the probabilistic tendency to connect to a hub has the strongest predictive power for influential spreaders among tested social mechanisms. Our observation also suggests that people who connect different communities is more likely to be an influential spreader when a network has a strong modular structure. Our finding implies that not only the effect of network location but also the behavior of individuals is important to design optimal immunization or spreading schemes.
منابع مشابه
Accurate prediction of influential spreaders in complex networks via message-passing approach
Identifying the most influential spreaders is one of outstanding problems in physics of complex systems. So far, many approaches have attempted to rank the influence of nodes but there is still the lack of accuracy to single out influential spreaders. Here, we directly tackle the problem of finding important spreaders by solving analytically the expected size of epidemic outbreaks when spreadin...
متن کاملCore-like groups result in invalidation of identifying super-spreader by k-shell decomposition
Identifying the most influential spreaders is an important issue in understanding and controlling spreading processes on complex networks. Recent studies showed that nodes located in the core of a network as identified by the k-shell decomposition are the most influential spreaders. However, through a great deal of numerical simulations, we observe that not in all real networks do nodes in high...
متن کاملIdentify Influential Spreaders in Online Social Networks Based on Social Meta Path and PageRank
Identifying “influential spreader” is finding a subset of individuals in the social network, so that when information injected into this subset, it is spread most broadly to the rest of the network individuals. The determination of the information influence degree of individual plays an important role in online social networking. Once there is a list of individuals who have high influence, the ...
متن کاملInfluence Maximization Based on the Least Influential Spreaders
The emergence of social media increases the need for the recognization of social influence mainly motivated by online advertising, political and health campaigns, recommendation systems, epidemiological study, etc. In spreading processes, it is possible to define the most central or influential vertices according to the network topology and dynamic. On the other hand, the least influential spre...
متن کاملA Community-Based Approach to Identifying Influential Spreaders
Identifying influential spreaders in complex networks has a significant impact on understanding and control of spreading process in networks. In this paper, we introduce a new centrality index to identify influential spreaders in a network based on the community structure of the network. The community-based centrality (CbC) considers both the number and sizes of communities that are directly li...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- PloS one
دوره 10 8 شماره
صفحات -
تاریخ انتشار 2015